안녕하세요. 은공지능 공작소의 파이찬입니다. 오늘은 Tensorflow estimator의 2가지 에러를 해결하는 포스팅을 준비했습니다.
1. TypeError: Fetch argument 0 has invalid type <class 'numpy.int64'> must be string or Tensor 2. TypeError: TF_SessionRun_wrapper: expected all value in input dict to be ndarray
자신의 코드와 데이터에 문제가 없는데, 자꾸 위의 에러가 뜨시는 분들은 계속 포스팅을 봐주시길 바랍니다. 우선 간단한 요약부터 시작하겠습니다.
1. 트러블 슈팅 요약
pip uninstall numpy # numpy 없다고 뜰 때까지 계속 반복해주세요.
pip install numpy # 저는 1.17버전이 깔렸으니, 참고해주세요.
pip install cython # 이 부분은 스킵해도 될 수 있는데, 저는 실행하였기에 남겨둡니다.
Tensorflow estimator에서 TypeError가 뜬 이유는 Numpy 라이브러리 때문이었습니다. 1.15 버전과 1.16 버전이 충돌해서 문제가 발생하는 것 같았습니다. 위의 코드처럼 numpy를 지웠다가 다시 깔아주면 문제는 해결됩니다.
만약 더 자세한 설명이 필요하신 분들은 계속 봐주세요.
2-1. 문제 상황 (에러 메시지)
위와 같이 2가지 에러메시지가 뜨는 상황입니다. 각각 다른 코드인데, 해결법은 동일합니다.
2-2. 모든 프로그램 창 닫아주기 (주피터, 파이참 등)
반드시 모든 프로그램(파이참, 주피터 등)을 닫아주시길 바랍니다. 안 그러면, 위와 같은 PermissionError 메시지가 뜹니다...
그래도 Numpy가 제거는 됩니다 ㅎㅎ 위의 사진은 주피터 노트북을 킨 상태에서 pip uninstall numpy를 날려줬을 때의 모습입니다. 마지막 줄에 numpy 1.16 버전이 제거가 되었다고 뜬 것을 확인하실 수 있을 겁니다.
그래도 여러분들은 저같은 시행착오를 방지하기 위해서, 꼭 모든 프로그램을 닫고 명령어를 날려주시길 바랍니다. 계속 진행해보겠습니다.
2-3. pip uninstall numpy 명령어 실행
(numpy가 없다고 뜰 때까지 계속 반복)
다시 모든 프로그램을 종료하고 돌아왔습니다. 그리고 pip uninstall numpy 명령어를 날려줍니다.
역시 제거할 numpy가 남아있었네요. 아까 분명 numpy 1.16 버전이 제거가 되었다고 된 상태였음에도, 1.15버전이 남아있습니다. y를 눌러서 제거를 해주시면 됩니다.
numpy가 깔끔하게 제거되었는지 알아보기 위해, 간단한 테스트를 진행해보겠습니다. 위의 화면처럼 우선 python을 실행시켜주시길 바랍니다. 그냥 python이라고 치시면 돼요 ㅎㅎ
파이썬이 실행이 되었다면, '>>>'이런 표시가 코드에 나타나게 됩니다. 이 상태에서 import numpy 명령어를 통해, numpy 라이브러리를 불러와줍니다.
No module named 'numpy'라고 뜬 부분이 보이시나요? numpy라는 라이브러리가 성공적으로 제거가 되었다는 뜻입니다.
2-4. pip install numpy 명령어 실행
pip install numpy 명령어를 날려서, 다시 numpy를 설치해줍니다. 마지막줄을 보니, numpy 1.17.1 버전이 설치가 되었군요.
하지만 빨간색줄로 에러가 상당히 많이 떠서... 좀 거슬립니다. 그래서 cython만 우선 설치해보고 테스트를 해보기로 했습니다.
cython이 성공적으로 설치가 된 모습입니다. 이 부분은 스킵을 해도 상관 없을 것 같긴 합니다. 하지만 저는 실행시켜준 부분이기에, 혹시 몰라 이렇게 알려드리는 겁니다.
3. 코딩 테스트
다시 코드를 돌려보니, 에러가 났던 것이 정상적으로 작동합니다. 이 에러를 가지고 거의 3일동안 씨름했거든요.. ㅜㅜ 감개무량합니다.
이렇게 오늘은 텐서플로우 에스티메이터 TypeError를 해결해보았습니다. 여름이 끝나가는데, 다들 여름휴가는 다녀오셨나요? ㅎㅎ 가끔은 머리도 식히고, 휴식도 필요하다는 것 잊지 마세요~!
안녕하세요! 은공지능 공작소 운영자 파이찬입니다. 오늘은 TF-IDF 벡터화에 대한 내용을 다루겠습니다. 자연어처리를 하다 보면 많이 등장하는 Feature extraction 기법입니다.
1. TF-IDF의 개념
TF-IDF의 풀네임은 Term Frequency - Inverse Document Frequency입니다. TF, IDF의 의미를 각각 이해하시면 정확한 의미 파악이 가능합니다. 자세한 내용은 위의 그림을 참조해 주세요.
그럼 이 TF-IDF가 어떻게 사용되고, 어떤 맥락에서 등장하게 되었는지 이해해보도록 하겠습니다.
TF-IDF는 일종의 특징 추출(Feature extraction) 기법입니다. 특징 추출이란, 말 그대로 raw data에서 특징을 뽑아내는 것을 의미합니다.
좀 추상적으로 들릴 수도 있는데요, 한마디로 정의하자면 '수치화'입니다. 텍스트 데이터를 컴퓨터가 그대로 인식할 수는 없습니다. 컴퓨터가 인식하려면 이를 숫자의 형태로 바꾸어 주어야 합니다.
이렇게 숫자의 형태로 바꾸어 주는 과정에서, 어떻게 하면 사람이 인지하듯이, 데이터의 특징을 잘 담을 수 있을지 고민하게 되고 여러 가지 특징 추출 기법이 등장하는 것입니다.
여러가지 특징 추출 기법 중 가장 기본적이 count 기반 특징 추출기법입니다. python scikit에서 CountVectorizer가 바로 이것입니다.
하지만 위의 그림에서 나오듯이, 이 CountVectorizer는 한계점이 존재합니다. 단어의 빈도수를 기반으로 하기 때문에, 조사, 관사 등의 의미 없는 단어에 높은 수치를 부여할 수 있다는 것입니다.
이러한 단점을 해결할 수 있는 것이 TF-IDF입니다. 일반적으로 TF-IDF가 CountVectorizer 보다 좋은 결과를 내놓는 것으로 알려져 있습니다.
이제 다시 한번 정확하게, TF, DF, IDF의 의미를 짚고 넘어가겠습니다. 위의 그림을 통해 의미를 이해하시면 됩니다.
+ 유튜브 동영상에는 설명이 빠진 것이 있어 보충합니다. TF-IDF에서 한 글자의 단어(Term)는 단어 사전에서 제외됩니다. 위의 문서들에 등장하는 단어 중 'I' 나 'a' 같은 단어에 이에 해당됩니다.
DF의 개념은 혼동될 수 있으니 조심하셔야 합니다. TF가 '단어'의 빈도를 나타내었다면, 'DF'는 문서의 빈도를 나타냅니다.
위의 그림에서 home은 전체 문서에서 총 4번 등장합니다. 그렇다고 해서 DF = 4로 잡으시면 안 된다는 말씀입니다.
비록 단어의 등장 횟수는 4번이지만, 해당 단어를 가진 문서는 총 3개이기 때문에 여기서 home의 DF는 3으로 잡는 것이 정확합니다. 이러한 점을 숙지하시고 넘어가시면 되겠습니다.
마지막으로 IDF의 개념을 잡고 넘어가겠습니다. IDF는 DF에 Inverse를 붙여준 것입니다. 수학에서 Inverse는 '역수'라는 의미를 가지고 있습니다.
역수는 분모와 분자를 뒤집는 것을 의미합니다. 예를 들어 3을 3/1이라고 표현하고, 분모와 분자를 뒤집는다면, 1/3이라고 할 수 있습니다. 이것이 역수의 개념입니다.
역수를 취해주면, 원래는 큰 값이 작은 값으로 확 줄어드는 효과를 낼 수 있습니다. 이러한 방식으로 많이 등장하는 단어에 패널티를 주기 때문에 DF에 Inverse를 붙여서 IDF라고 이름이 붙여졌습니다. IDF를 구하는 수식은 위의 그림을 참조해주시면 됩니다.
from sklearn.feature_extraction.text import TfidfVectorizer
text = ['I go to my home my home is very large', # Doc[0]
'I went out my home I go to the market', # Doc[1]
'I bought a yellow lemon I go back to home'] # Doc[2]
tfidf_vectorizer = TfidfVectorizer() # TF-IDF 객체선언
이제 본격적으로 코드 실습을 시작하겠습니다. 설명자료에서 쓰인 문장들을 그대로 가져왔습니다. 총 3개의 문서가 담긴 데이터입니다.
안녕하세요. 은공지능 공작소의 파이찬입니다. 오늘 들려드릴 TMI는 kaggle 데이터. 상업적 이용이 가능한가? 라는 내용입니다.
요새 영화 데이터, 성경 텍스트 등으로 포스팅도 하고 유튜브도 찍으면서 이런 데이터들을 마음대로 가져다써도 되는지 궁금해졌습니다. 은공지능 공작소는 구글 애드센스 승인이 되었기 때문에 kaggle data로 포스팅을 할 시, 데이터의 상업적 이용이라고 말할 수 있는 근거가 있거든요.
그래서 준비했습니다! 캐글 데이터의 저작권 라이선스 알아보기! 결론부터 말씀드리면 kaggle의 데이터마다 라이선스가 모두 다릅니다. 어떤 것은 재사용이 가능하고, 상업적인 이용도 가능한 반면에 어떤 것은 외부에서의 사용이나, 재사용, 공유 등이 엄격하게 제한된 것도 있습니다.
저는 그중에서도 상업적 재사용이 가능한지에 초점을 맞추어서 설명을 드리겠습니다. 그럼 지금부터 본격적으로 어떻게 이런 라이선스를 확인할 수 있는지 알려드리겠습니다.
kaggle에서 데이터를 볼 수 있는 곳은 크게 2가지 경로가 있습니다. competition에 들어가실 수도 있고, 아니면 dataset에 들어가실 수도 있습니다. dataset부터 competiton 데이터 순서대로 살펴보겠습니다.
1. Creative Commons 데이터
- 상업적 사용 가능! -
Dataset에 들어가시면 다음과 같은 화면이 나오는데요. 빨간색 박스로 표시된 필터 부분을 클릭해보시길 바랍니다.
라이선스 관련된 부분에 여러 가지가 뜨는데요, 저희는 그중에서도 Creative commons부터 살펴보겠습니다. Creative Commons를 클릭하고 Done 버튼을 눌러 검색을 해봅니다.
많은 데이터가 뜰 텐데요, 이렇게 필터를 거쳐서 나온 데이터들은 모두 Creative Commons 라이선스를 가진 데이터들입니다. 제일 핫한 Crimes in Boston 데이터를 클릭해서 들어가 보겠습니다.
빨간색 박스로 표시된 CC:0 Public Domain 부분을 클릭합니다. 그러면 아래와 같은 저작권 설명 사이트가 나옵니다.
Creative Commons License는 CCL 또는 CC 라이선스라고도 합니다. 상업적 사용이 가능한 라이선스입니다!
중간을 보시면 큰 글씨로 No Copyright라고 된 부분을 볼 수 있습니다. 데이터의 복사, 수정, 배포 모두 가능하고요. 무엇보다 여기에서 결정적인 부분은 even for commercial purposes!! 상업적 사용이 가능하다는 것입니다.
그러니 누구든지 이런 CCL이 붙은 데이터들을 가공해서 블로그 포스팅을 한다던지 유튜브 영상을 찍는 일도 가능하다는 말입니다. 가장 안심하고 사용할 수 있는 데이터 소스라고 할 수 있습니다.
2. GPL (General Public License)
- 상업적 사용 가능! (단, 소스코드 공개) -
다음으로 살펴볼 것은 GPL 라이선스를 가진 데이터입니다. GPL은 General public license의 약자로 일반 공중 사용 허가서를 말합니다.
제가 쭉 살펴본 결과 대부분의 GPL 데이터에서 버전 2의 라이선스가 걸려 있는데요, 이걸 줄여서 GPL 2라고 합니다.
위에서 보시는 것처럼, 라이센스 부분에 GPL2라고 된 것을 볼 수 있습니다. 이 GPL2 라이센스가 걸린 데이터도 상업적 사용이 가능합니다!
다만, 앞에서 말씀드린 CCL과 차이점이 존재하는데요. 만일 이 데이터를 2차 창작물을 만들었을 때, 다른 사름들이 이용할 수 있게끔 소스 코드를 공개할 수 있어야 된다는 것입니다.
바로 이러한 점이 GPL의 핵심입니다. 대부분의 저작권은 다른 사람이 내 지적재산권을 마음대로 침해할 수 없도록 규제하는 것이 골자라면, GPL은 어떤 프로그램이나 데이터가 2차, 3차 창작을 거치더라도 계속 자유롭게 사용될 수 있도록 하는 것이 핵심입니다.
잠깐 옆길로 샜네요. 이것이 바로 TMI 컨탠츠의 묘미죠. 다시 본론으로 돌아와서, 정리하면 GPL kaggle 데이터. 상업적 사용 가능합니다. 단, 소스코드 공개하세요. 이것이 GNU GPL의 기준입니다.
3. Database Contents License
- 상업적 사용 가능! -
세 번째로 살펴볼 것은 Database contents license입니다. 줄여서 DbCL이라고 부릅니다.
아무 데이터에 들어가서, 라이선스 부분을 클릭해줍니다. 이렇게 하면 Open Database 라이센스 관련 페이지로 이동합니다.
상업적 이용 가능할까요? 네. 가능합니다.
여기 이 라이센스 부분을 클릭하게 되면 관련 문서로 넘어가게 되는데요. 섹션 2의 2.1항 5번째 줄에 명시되어 있습니다.
explicitly include commercial use!! 상업적 이용권을 명백히 포함하고 있다고요. 너무나 explicitly 단어로 명백하게 말해주고 있습니다.
카피라이트는 독점적인 저작권을 말합니다. 즉, 카피라이트는 이 내용물의 권리가 나한테 있으니 내 허락 없이 못써! 가 된다면 카피레프트는 너 혼자만 이 좋은걸 독점할 수 없지. 모두 공유해야 해!입니다.
데이터베이스 콘텐츠 라이선스는 바로 이 카피레프트를 기반으로 합니다. 그러니 상업적인 사용도 물론 가능하겠죠?
4. Other 라이센스
- 확인 후 상업적 사용 가능 -
지금까지 살펴본 3가지 라이센스는 모두 상업적 사용이 가능했습니다. 그래서 뭐야 다 막 갔다 써도 되는 거 아니야?라고 생각하시는 분들도 있을 겁니다.
응 아니야~ 라고 말해주고 싶네요. 저작권이 있는 데이터들도 분명히 있습니다.
여기 필터에서 others라고 된 것들은 좀 신경을 많이 써서 봐야 합니다. 우선 저렇게 필터 설정을 하고 검색을 해봅니다. 그리고 Electronic Motor Temperature 데이터를 살펴보았습니다.
이 데이터의 경우 저작권이 명시가 되어있습니다. 그러니 이런 데이터의 경우 함부로 맘대로 가져다 상업적으로 이용해선안 됩니다.
반면에 라이선스가 명시되어 있지 않은 데이터도 있는데요. 위의 그림처럼 Metadata에 들어가시면 라이선스를 확인할 수 있습니다.
해당 데이터는 Unknown이라고 표시가 됩니다. 라이선스가 불명확한 것이죠. 그러니 파이찬은 이렇게 other 필터를 거쳐서 나온 데이터에 대해 가급적 상업적 이용을 권장드리지 않습니다.
5. Competition 데이터
- 확인 후 상업적 사용 가능 -
competition 데이터도 상업적 사용을 하나씩 확인을 해봐야 합니다. 이 competition 탭에서는 라이선스로 검색할 수 있는 기능이 별도로 없는 것으로 알고 있습니다. 따라서 직접 competiton을 하나하나 들어가 보면서, 데이터의 상업적 사용이 가능한지 체크해봐야 합니다.
먼저 Competiton에 하나 들어가 봅니다. 저는 APTOS 2019 Blindness Detection이라는 competition에 들어갔습니다.
Competition은 개최기간이 있으므로, 나중에 포스팅을 보시면 해당 대회가 닫힐 수 있습니다. 다른 competition에 들어가셔도 무방하니, 참고 바랍니다.
먼저 여기의 Rules로 들어가시고, Ctrl + F를 눌러 키워드 검색창을 열어줍니다. 그런 뒤에 키워드는 commercial로 검색을 해줍니다.
이런 식으로 문서 내 검색을 통해서 상업적 사용이 가능한지 체크를 다 해보는 수밖에 없습니다. 그러니 competition 데이터를 상업적으로 사용하려면 꼭! 반드시 위의 방법으로 상업적 이용 가능 여부를 체크해보시길 바랍니다.
정리를 해보겠습니다. ※ 1. Creative Commons, GPL2, Open Database 라이선스를 가진 데이터는 상업적 사용이 가능합니다.
2. Other 필터를 거친 데이터, Competiton 데이터는 약간의 확인 작업 후 상업적 사용이 가능합니다. ※
네 이렇게 해서 오늘은 kaggle 데이터의 상업적 사용에 대해서 포스팅을 해보았습니다. 도움이 되셨다면 하단에 하트 버튼 잊지 마시구요!
위와 같은 방식으로 불용어 사전을 업데이트할 수 있습니다. output을 보시면 마지막에 stopwords1, stopwords2가 업데이트된 것을 확인하실 수 있을 겁니다.
이렇게 stopwords를 업데이트해주는 것은 바로 wordcloud를 그려줄 때 옵션으로 적용할 수 있습니다.
이제 html 제거와 stopwords 업데이트를 모두 이해했으니, 이를 영화 데이터에 적용시켜 봅시다.
3. IMDb 데이터에서 html 태그 제거해주기
def data_engineering(input):
from bs4 import BeautifulSoup
rst = [] # rst는 result의 줄임말
for i in input:
# html 태그 제거
data = BeautifulSoup(i, 'html5lib').get_text() # 필터 적용
rst.append(data) # 결과를 rst리스트에 계속 추가
return rst
train_data_html_out = data_engineering(train_data['txt'])
html 태그를 제거하는 함수를 하나 만들어 주고, 이름은 data_engineering으로 붙였습니다. 그리고 이 함수를 통해 train_data의 txt 컬럼을 정제하였습니다. 정제된 결과는 train_data_html_out에 담았고, 결과는 아래와 같습니다.
영화 리뷰 데이터에서 <br>과 같은 html 태그가 깔끔하게 사라진 모습입니다.
4. Stopwords(불용어) 업데이트해주기
위의 워드클라우드는 저번 시간에 그린 워드 클라우드입니다. html 태그도 제거 안되어있고, 불용어 처리도 기본적인 것들로만 되어 있습니다.
여기서 제거해주고 싶은 단어를 3가지 정도 찾아보겠습니다. 큰 글자일수록, 해당 단어가 데이터에 자주 등장함을 의미합니다.
여기서는 'movie', 'film', 'one' 세 가지 단어를 제거해보겠습니다. 그러기 위해서는 위 3 단어로 불용어 사전을 업데이트해줘야 합니다.
위에서 보시는 것처럼 'one', 'movie', 'film'이라는 3 단어를 불용어에 추가한 후 이를 extend 함수를 통해 업데이트해주었습니다. 업데이트된 결과는 아래와 같습니다.
빨간 박스를 보면 3가지 불용어가 잘 추가된 것을 확인하실 수 있습니다.
5. 워드클라우드 그려보기
from wordcloud import WordCloud, STOPWORDS
import matplotlib.pyplot as plt
%matplotlib inline
wordcloud = WordCloud(stopwords = stopwords_pychan,
background_color = 'black', #배경색
width = 800,
height = 600).generate(' '.join(train_data_html_out))
plt.figure(figsize = (15, 10)) # 각각 가로 세로 인치 입니다.
plt.axis("off") # 축에 표시되는 눈금을 제거하는 옵션
plt.imshow(wordcloud) # 이미지가 표시되도록 하는 옵션.
plt.show() # 최종으로 보여주는 옵션.
html이 제거된 데이터를 가지고 워드 클라우드를 그려보았습니다. 여기서 stopwords 옵션에 주목해주시길 바랍니다.
stopwords_pychan이라고 해준 것을 사용했습니다. 이는 위에서 저희가 'one', 'movie', 'film' 3가지 불용어를 추가해준 것입니다. 불용어 처리를 했기에 앞으로 그릴 워드클라우드에서는 해당 단어들이 보이면 안 되겠지요.
나머지 코드들은 지난 시간에 다 설명드린 내용이므로 넘어가겠습니다. 바로 결과를 확인해보시죠.
br 태그를 포함해서 film, movie, one이 사라진 워드클라우드가 나온 것을 확인하실 수 있습니다.
그런데 이런 것들을 제거해줬더니, 이번엔 show나 character 같은 엉뚱한 단어들이 수면위로 올라왔습니다.
이런 결과는 워드클라우드를 그린다 해도 별로 의미가 없을 것 같습니다. 제가 생각했을 때, 좀 의미가 있으려면 지역 명칭이 나온다던지, 영화배우 이름이 나온다던지 이런 고유명사가 나와준다면 워드클라우드가 의미가 있을 것 같은데, 이렇게 나오는 것은 좀 더 손을 많이 봐야 할 것 같습니다.
그렇다면 긍정, 부정 단어들로만 워드 클라우드를 딱딱 그릴 수는 없을까 고민을 해보았습니다. 위에서 했던 것처럼 stopwords를 일일이 손으로 추가하다가는 엄청 시간이 많이 걸릴 것 같습니다.
이런 방법이 다른 모델에 적용이 될지도 의심스럽구요. (여기서 제거된 단어가 다른 자연어 워드클라우드에서는 의미를 가질 수도 있으니까요.)
다행히도 방법이 있었습니다. 바로 긍정 단어, 부정 단어만 모아놓은 일종의 리스트를 적용시키는 것인데요. 구글링 결과 깃허브에 누가 이러한 단어들을 정리를 해두었습니다. 이제부터 그것을 적용시켜서 각각 긍정 워드클라우드, 부정 워드클라우드를 그려볼까 합니다.
6. 긍정, 부정 단어 리스트 적용하여 워드 클라우드 그리기
위의 깃허브에 긍정단어, 부정단어가 정리된 텍스트 파일이 있습니다. 프로필을 보니, 인도 프로그래머 Shekhar Gulati라는 분이네요 ㅎㅎ (Thank you for your Git :)
사이트에 들어가시면 위와 같은 화면이 뜹니다. 초록 단추를 누른 후, 위와 같이 웹주소를 복사해 줍니다.
conda install git
이제 아나콘다 프롬프트를 실행시켜 줍니다. 그리고 git 라이브러리를 설치하지 않으신 분들은 위와 같이, git 라이브러리를 설치하는 명령어를 날려줍니다.
위와 같은 방식으로 전처리를 조금 해줍니다. 각각 \n으로 구분자를 명시해서 쪼개 주고(split) 35번째 인덱스부터 다시 변수에 담아주는 방식입니다.
\n을 구분자로 쓴 이유는, 해당 txt 파일이 줄바꿈(엔터)로 구분되어 있기 때문입니다. 또한 35번째 index부터 긍정/부정 단어가 나오기 때문에, 인덱스를 [35:]로 설정해, [1:34]의 설명 부분을 제외시켰습니다.
def data_cleaning(input, pos):
clean_word = [] # 리턴값을 담아줄 리스트 선언
for i in input: # i에는 여러 문장들이 담김.
for j in i.split(): # i를 단어별로 쪼개 j에 담음
if pos: # pos가 True라면 실행
if j in pos_word: # 단어를 하나씩 positive-word와 비교
clean_word.append(j)
else: # pos가 False라면 실행
if j in neg_word: # 단어를 하나씩 negative-words와 비교
clean_word.append(j)
return clean_word
이제 위와 같이 데이터에서 긍정, 부정단어들을 필터링 해주는 함수를 만들어줍니다. input 변수로 리뷰 데이터를 받아서 return값으로 긍정/부정 단어가 담긴 리스트를 출력해주는 방식입니다.
자세한 설명은 코드 주석으로 대신하겠습니다 ^^; 참고로 제 유튜브 영상을 보시면 어떻게 생각하면서 함수를 짜는지 세세하게 설명이 되어있습니다.
안녕하세요. 은공지능 공작소의 파이찬입니다. 오늘은 자연어처리 강력한 코딩 팁을 들고 왔습니다. apply, lambda, python comprehension을 이용한 데이터 EDA 방법입니다.
이 3가지 조합으로 정말 많은 정보들을 뽑아낼 수 있습니다. 저도 이 3가지 코딩법은 각각 알고 있었지만, 이것을 조합해서 쓸 때 더욱 강력하다는 것을 알았고, 또 몸에 체득하는 것이 중요하다는 것을 알았습니다.
여러분들도 실전 코딩에서 유용하게 사용하실 수 있길 바랍니다. 그럼 시작해보겠습니다.
1. 데이터 생성해주기
데이터는 성경 데이터를 가져왔습니다. 마태복음 11장입니다.
"무거운 짐 진 자들아 다 내게로 오라 내가 너희를 쉬게 하리라" 라는 구절로 유명한 챕터입니다. 마음이 평온해지는 구절이죠. ^^
데이터 생성하는 부분은 크게 중요하지 않으니, 그냥 아래 코드를 복붙하셔서 진행하시면 됩니다.
data = '''After Jesus had finished instructing his twelve disciples, he went on from there to teach and preach in the towns of Galilee.
When John heard in prison what Christ was doing, he sent his disciples
to ask him, "Are you the one who was to come, or should we expect someone else?"
Jesus replied, "Go back and report to John what you hear and see:
The blind receive sight, the lame walk, those who have leprosyare cured, the deaf hear, the dead are raised, and the good news is preached to the poor.
Blessed is the man who does not fall away on account of me."
As John's disciples were leaving, Jesus began to speak to the crowd about John: "What did you go out into the desert to see? A reed swayed by the wind?
If not, what did you go out to see? A man dressed in fine clothes? No, those who wear fine clothes are in kings' palaces.
Then what did you go out to see? A prophet? Yes, I tell you, and more than a prophet.
This is the one about whom it is written: " 'I will send my messenger ahead of you, who will prepare your way before you.'
I tell you the truth: Among those born of women there has not risen anyone greater than John the Baptist; yet he who is least in the kingdom of heaven is greater than he.
From the days of John the Baptist until now, the kingdom of heaven has been forcefully advancing, and forceful men lay hold of it.
For all the Prophets and the Law prophesied until John.
And if you are willing to accept it, he is the Elijah who was to come.
He who has ears, let him hear.
"To what can I compare this generation? They are like children sitting in the marketplaces and calling out to others:
" 'We played the flute for you, and you did not dance; we sang a dirge and you did not mourn.'
For John came neither eating nor drinking, and they say, 'He has a demon.'
The Son of Man came eating and drinking, and they say, 'Here is a glutton and a drunkard, a friend of tax collectors and "sinners." ' But wisdom is proved right by her actions."
Then Jesus began to denounce the cities in which most of his miracles had been performed, because they did not repent.
"Woe to you, Korazin! Woe to you, Bethsaida! If the miracles that were performed in you had been performed in Tyre and Sidon, they would have repented long ago in sackcloth and ashes.
But I tell you, it will be more bearable for Tyre and Sidon on the day of judgment than for you.
And you, Capernaum, will you be lifted up to the skies? No, you will go down to the depths. If the miracles that were performed in you had been performed in Sodom, it would have remained to this day.
But I tell you that it will be more bearable for Sodom on the day of judgment than for you."
At that time Jesus said, "I praise you, Father, Lord of heaven and earth, because you have hidden these things from the wise and learned, and revealed them to little children.
Yes, Father, for this was your good pleasure.
"All things have been committed to me by my Father. No one knows the Son except the Father, and no one knows the Father except the Son and those to whom the Son chooses to reveal him.
"Come to me, all you who are weary and burdened, and I will give you rest.
Take my yoke upon you and learn from me, for I am gentle and humble in hear t, and you will find rest for your souls.
For my yoke is easy and my burden is light."'''
data_dict = {}
data_dict['verse'] = []
for row in [x for x in data.split('\n')]:
data_dict['verse'].append(row)
bible_data = pd.DataFrame.from_dict(data_dict)
# bible_data
이렇게 하여 마태복음 11장을 가지고 데이터 프레임을 만들어 보았습니다. 다음으로 Apply 함수에 대해 이해해보는 시간을 가지겠습니다.
2. Apply 함수 이해하기
Apply 함수는 컬럼 단위로 적용되는 함수입니다. 즉, 행열 중 열을 기준으로 다양한 함수를 적용합니다.
적용되는 함수는 기본함수부터 사용자가 정의한 함수까지 다양합니다. 물론 람다(lambda)도 쓰일 수가 있고요.
이런 식으로 즉석에서 사용자 정의 함수를 만드는 것이 바로 lambda 구문입니다. 아까와 동일한 결과를 내놓지만 코드는 더 깔끔하죠!
이런 것들이 몸에 체득이 되면, 코딩 실무에서 매우 강력한 무기가 될 수 있고 고수의 느낌도 슬슬 풍길 수 있습니다. 여기에다가 list comprehension을 더해주면 더욱 완벽해집니다.
4. List comprehension 이해하기
List comprehension... 이름만 들으면 참 아리송합니다. 리스트는 파이썬의 리스트 데이터 타입을 말하는 것인데, 컴프리헨션의 의미와 구문 사용법이 잘 매칭이 되질 않습니다.
굳이 짜맞추자면 "고도의 이해력을 가진 사람만이 쓸 수 있는 코딩구문"(???) 네 개소리인 것 같습니다...ㅋㅋㅋ 그냥 컴프리헨션이라는 코딩 문법이 있고, 사용법을 숙지하고 가시면 됩니다.
이번에는 각 row 마다 대문자의 개수를 세주는 상황을 가정하겠습니다. 마태복음 11장은 총 30절이 있으니, 30개의 숫자를 가진 컬럼이 출력되는 방식입니다. 가장 기본적은 Comprehension부터 살펴보겠습니다.
[i for i in bible_data['verse']]
output:
['After Jesus had finished instructing his twelve disciples, he went on from there to teach and preach in the towns of Galilee.',
'When John heard in prison what Christ was doing, he sent his disciples',
'to ask him, "Are you the one who was to come, or should we expect someone else?"',
...
'"Come to me, all you who are weary and burdened, and I will give you rest.',
'Take my yoke upon you and learn from me, for I am gentle and humble in heart, and you will find rest for your souls.',
'For my yoke is easy and my burden is light."']
가장 기본적인 List comprehension의 구문입니다. 이런 식으로 Comprehension은 리스트 대괄호로 감싸주는 것이 기본입니다.
일반적인 for 반복문은 많이 보셨을 것입니다. list comprehension은 간단한 코딩을 위해 실행문을 for문 앞으로 가져오는 것입니다.
위의 그림을 보면 이해가 쉬우실 겁니다. 달라지는 점은 실행문이 앞으로 온다는 것, 그리고 대괄호로 감싸주는 것뿐입니다.
[len(i) for i in bible_data['verse']]
output:
[125,
70,
80,
...
74,
116,
44]
좀 더 이해를 돕기 위해, i 에 len() 함수를 씌워보았습니다. 이런 식으로 함수를 씌워주면, 모든 데이터가 len 함수를 거쳐서 나오게 됩니다. 이것이 바로 for문을 간단하게 코딩할 수 있는 list comprehension입니다.
5. 종합 연습 (Apply, Lambda, List comprehension 모두 사용)
지금까지 Apply, Lambda, List comprehension까지 모두 다루어보았습니다. 이제는 이 3가지 무기들을 조합해, 강력한 무기를 사용해볼 때입니다.
이번에는 각 절(verse) 마다 몇 개의 대문자가 있는지 출력해보는 상황을 가정하겠습니다.
코딩 논리 흐름은 다음과 같습니다. apply로 문장에 접근 -> 문자 별로 쪼개고 대문자인 것을 True/False로 출력 -> np.sum
bible_data['verse'].apply(lambda x: [i for i in x]) # lambda x는 in 뒤에 들어갑니다.
bible_data['verse'].apply(lambda x: [i.isupper() for i in x]) # for앞이 실행문인것 기억
bible_data['verse'].apply(lambda x: np.sum([i.isupper() for i in x])) # np.sum 위치 주목